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Intended Learning Outcomes 
In this chapter, we consider insulating materials, or dielectrics.

Such materials differ from conductors in that ideally, there is no free charge that can be
transported within them to produce conduction current.

An applied electric field has the effect of displacing the charges slightly, leading to the
formation of ensembles of electric dipoles; this process is called Polarization . The
extent to which this occurs is measured by the relative permittivity, or dielectric
constant.

Boundary conditions for the fields at interfaces between dielectrics are developed to
evaluate these differences.

In the end, the methods for calculating capacitance for a number of cases are presented,
including transmission line geometries, and to be able to make judgments on how
capacitance will be altered by changes in materials or their configuration.
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Dielectrics and Polarization
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 Dielectrics are materials which have no free charges; all electrons are bound and

associated with the nearest atoms (Fig. 7.1(a)). They behave as electrically

neutral when they are not in an electric field.

 An external applied electric field causes microscopic separations of the centers of

positive and negative charges as shown in Fig 7.1 (b).

 These separations behave like electric dipoles, and this phenomenon is known as

dielectric polarization.
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Electric dipole 
moment
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Dielectrics may be subdivided into two groups :

• Non-Polar: dielectrics that do not possess permanent electric dipole moment. Electric dipole

moments can be induced by placing the materials in an externally applied electric field.

• Polar: dielectrics that possess permanent dipole moments which are ordinarily randomly

oriented, but which become more or less oriented by the application of an external electric

field. An example of this type of dielectric is water.

(a) (b)

Orientations of polar molecules when(a) E0 = 0, and (b) E0 ≠ 0. Orientations of non-polar molecules when(a) E0 = 0, and (b) E0 ≠ 0. 

(a) (b)



Dielectrics and Polarization

However, the alignment is not complete due to random thermal motion.

The aligned molecules (induced dipoles) then generate an electric field that is

opposite to the applied field but smaller in magnitude.
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what is the average electric field just due to the presence of

the aligned dipoles?

To answer this question, let us define the polarization vector

𝑃 to be the net electric dipole moment vector per unit volume:

Suppose we have a piece of material in the form of a cylinder

with area A and height h, and that it consists of N electric

dipoles, each with electric dipole moment  𝑝 spread uniformly

throughout the volume of the cylinder.

(1)
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In the case of our cylinder, where all the dipoles are perfectly aligned, the 

magnitude of 𝑃 is equal to

(a) A cylinder with uniform dipole distribution. 

(b) Equivalent charge distribution.

(a) (b)

C/m2

From the equivalence between (Fig. (a) and (b)), we

have two net charges ±QP which produce net dipole

moment of QPh; hence

we note that the equivalent charge distribution

resembles that of a parallel-plate capacitor, with an

equivalent surface charge density σP that is equal to

the magnitude of the polarization:
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Thus, our equivalent charge system will produce an average electric field of

magnitude 𝐸𝑃 = 𝑃/𝜖0. Since the direction of this electric field is opposite to the

direction of 𝑃, in vector notation, we have

The total electric field 𝐸 is the sum of these two fields:

In most cases, the polarization 𝑃 is not only in the same direction as 𝐸 but also

linearly proportional to 𝐸0(and hence 𝐸.) This is reasonable because without the

external field there would be no alignment of dipoles and no polarization. We

write the linear relation between and as

(2)

(3)

(4)



Dielectrics and Polarization
where χe is called the electric susceptibility. Materials that obey this relation are 

linear dielectrics. Combing Eqs. (2) and (3) gives
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Thus, we see that the effect of dielectric materials is always to decrease the 

electric field below what it would otherwise be.

𝜀𝑟 = 𝜅𝑒 = 1 + 𝜒𝑒where 

is the dielectric constant. The dielectric constant 𝜅𝑒is always greater than one 

since 𝜒𝑒 > 0. 

(5)



Electric flux Density (D):

Electric flux density is defined as charge per unit area and it has same units of

dielectric polarization.

Electric flux density D at a point in a free space or air in terms of Electric field

strength is

At the same point in a medium is given by

As the polarization measures the additional flux density arising from the presence

of material as compared to free space

Dielectric Constant and Susceptibility

E  D 00 

E)1(P E  D 00 e 

E  D r0

 E  D 
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Definitions
Polarization: the process of creating or inducing dipoles in a dielectric medium by
an external field.

Polarizability: the ability of dielectric to form instantaneous dipoles. It is a
property of matter

Polarization vector: it is defined as the dipole moment per unit volume.
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Electric susceptibility (χe) is a dimensionless proportionality constant that

indicates the degree of polarization of a dielectric material in response to an

applied electric field. The greater the electric susceptibility, the greater the ability

of a material to polarize in response to the field, and thereby reduce the total

electric field inside the material (and store energy).

C/m2



Definitions
permittivity (ε): is the measure of resistance that is encountered when forming an

electric field in a medium. In other words, permittivity is a measure of how an

electric field affects, and is affected by, a dielectric medium.
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permittivity ε is measured in farads per meter, and εr is the relative permittivity of

the material.

Dielectric Constant (relative permittivity) gives a measure of the polarizability of
a material relative to free space and is defined as the ratio between the permittivity
of the medium to the permittivity of free space.

0


 r



Boundary conditions for Dielectric 
materials
Let us first consider the interface between two dielectrics having permittivities 𝜀1
and 𝜀2 and occupying regions 1 and 2, as shown in the figure below.
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We first examine the tangential components by using

around the small closed path, obtaining

The small contribution by the normal component 

of E along the sections of length ∆ℎ becomes 

negligible as ∆ℎ decreases and the closed path

crowds the surface. Immediately, then,

(7)



Boundary conditions for Dielectric 
materials
The boundary conditions on the normal components are found by applying Gauss’s
law to the small “pillbox” shown in the figure below.
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The sides are again very short, and the flux leaving 

the top and bottom surfaces is the difference

This charge may be placed there deliberately, thus 

unbalancing the total charge in and on this 

dielectric body. Except for this special case, ρS is 

zero on the interface; Hence
or

(8)

(9)



Boundary conditions for Dielectric 
materials
Let D1 (and E1) make an angle θ1 with a normal to the

surface as shown in the figure. Because the normal

components of D are continuous,
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But

(10)

Thus

and the division of this equation by (10) gives

(11)
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materials
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Example: Find the fields within the Teflon slab (εr = 2.1), 

given the uniform external field Eout = E0 ax in free space.

as shown in Figure, with free space on both 

sides of the slab and an external field

We also have

and
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Inside, the continuity of DN at the boundary allows us to find that Din = Dout =

ε0E0 ax. This gives us

To get the polarization field in the dielectric, 

we use D = ε0E + P and obtain
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Region1 Region2



Boundary conditions for Dielectric 
materials

11/24/2017 21

Dt1 DN1

)(cos
1

11

1
D

DN

22

1 yxt DDD  222

1 zyx DDDD 

1011 EDP 

rDE  011 / )
1

1(11

r

DP




The boundary at plane Z = 0, hence

X

Z
Y

Region1 Region2



Boundary conditions for Dielectric 
materials

11/24/2017 22



Capacitance

The characteristic that all dielectric materials have in common, whether they are

solid, liquid, or gas, and whether or not they are crystalline in nature, is their

ability to store electric energy.

This storage takes place by means of a shift in the relative positions of the

internal, bound positive and negative charges against the normal molecular and

atomic forces.

A capacitor is a device that stores energy; energy thus stored can either be

associated with accumulated charge or it can be related to the stored electric field.
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Capacitance
A capacitor is a device for storing electrical charge.

Capacitors consist of a pair of conducting plates separated by an insulating material (oil, paper, air).

The measure of the extent to which a capacitor can store charge is called Capacitance.

Capacitance is measured in farads F, or more usually microfarads µF or Pico farads pF.
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Capacitance
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We define the capacitance of a two-conductor system as “the ratio of the

magnitude of the total charge on either conductor to the magnitude of the

potential difference between conductors”.

Farad 

1 F = 1 farad = 1coulomb/volt



Capacitance
In general terms, we determine Q by a surface integral over the positive
conductors, and we find V0 by carrying a unit positive charge from the negative to
the positive surface,
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The capacitance is independent of the potential and total charge, for their ratio is

constant.

The capacitance is a function only of the physical dimensions of the system of

conductors and of the permittivity of the homogeneous dielectric.

d

A
C r 0

)/ln(

2 0

ab

L
C r


For parallel plate capacitor For coaxial cable
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Case 1: Dielectrics without Battery

• As shown in Figure, a battery with a potential difference |∆𝑉0| is first connected to a capacitor C0,

which holds a charge 𝑄0 = 𝐶0|∆𝑉0| . We then disconnect the battery, leaving 𝑄0 = const.

• insert a dielectric between the plates, while keeping the charge constant, experimentally it is

found that

εr

r

V
V



||
|| 0


• This implies that the capacitance is changed to 
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Case 2: Dielectrics with Battery

• Consider a second case where a battery supplying a potential difference |∆𝑉0| remains connected

as the dielectric is inserted. Experimentally, it is found

εr

0QQ r

• This implies that the capacitance is changed to 

0
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• where Q0 is the charge on the plates in the absence of any dielectric.



Capacitance
Parallel-plate Capacitor
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Consider two metallic plates of equal area A separated by a distance d, as shown 

in the figure below. a uniform sheet of surface charge ±ρS on each conductor leads 

to the uniform field
and



Capacitance
Parallel-plate Capacitor
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The potential difference between lower and upper planes is
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Capacitance
Parallel-plate Capacitor
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Capacitance
Cylindrical Capacitor
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To calculate the capacitance, we first compute the electric field. Due to the

cylindrical symmetry of the system, we choose our Gaussian surface to be a coaxial

cylinder with length ℓ < L and radius r where a < r < b. Using Gauss’s law, we have

/  encolsed

S

QdAE 

𝐸𝐴 = 𝐸 2𝜋𝑟ℓ =
𝜌𝑙ℓ

𝜀

∴ 𝐸 =
𝜌𝑙
2𝜋𝜀𝑟

Where ρl is the line charge density, and ρl = 
𝑄

𝐿

ℓ



Capacitance
Cylindrical Capacitor
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The potential difference is given by

= −
𝜌𝑙
2𝜋𝜀

 
𝑏

𝑎 𝑑𝑟

𝑟
=
𝜌𝑙
2𝜋𝜀

ln
𝑏

𝑎





2/)ln( ab

L

V

Q
C

l

l




)ln(

2

ab

L
C


 ℓ


a

b
rba drEVVV  



Capacitance
Spherical Capacitor
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let’s consider a spherical capacitor which consists of two concentric spherical shells

of radii a and b, as shown in Figure

(a) spherical capacitor with two concentric 

spherical shells of radii a and b. 

(b) Gaussian surface for calculating the 

electric field.



Capacitance
Spherical Capacitor
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The electric field is non-vanishing only in the region a < r < b. Using Gauss’s law,

we obtain

Therefore, the potential difference between the two conducting shells is:

which gives
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Find the capacitance shown in the figure, where the region

between the plates is filled with a dielectric having a dielectric

constant εr

Solution:

Assuming the voltage applied to the electrodes is V0





 dlEV0

Using the cylindrical coordinates system (r, φ, z), it is clear that 

the field is in the aφ direction
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From the boundary conditions for conductors
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parallel-plate capacitor containing two dielectrics with the 

dielectric interface parallel to the conducting plates.

Let’s consider the two parallel-plate capacitor having two dielectric materials ε1 and 

ε2 , as shown in the figure below, and their thickness are d1 and d2, respectively.
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Suppose we assume a potential difference V0

between the plates. The electric field intensities in

the two regions, E2 and E1, are both uniform,

22110 dEdEV 

At the dielectric interface, E is normal, and from the 

boundary conditions
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From the boundary conditions for conductors, the surface 

charge density on the lower plate has the magnitude

)ε()ε( 2211

0
1111

dd

V
EDS


 

Because D1 = D2, the magnitude of the surface charge 

is the same on each plate. The capacitance is then
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ε1 ε2

d

S1 S2
If the dielectric boundary were placed normal to the 

two conducting plates and the dielectrics occupied 

areas of S1 and S2, as shown in the figure

then an assumed potential difference V0 would 

produce field strengths
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